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Potassium organotrifluoroborates have already been shown to
be an indispensable class of transformative organic reagents for
wide range of cross-coupling reactions.1 The possible combinations
of electrophiles and nucleophiles in cross-coupling reactions of
allylic metals with aryl, alkenyl, and allyl electrophiles, or their re-
versed combination, are important due to the frequent occurrence
of these fragments in natural products.2 In light of their low toxic-
ity and operational simplicity, we have attempted to use potassium
allyltrifluoroborates as allylating agents and discovered a new pal-
ladium catalyst system for microwave-enhanced coupling of
potassium allyltrifluoroborates and aryl halides with remarkable
regioselectivity (Eq. (1)).
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Following the recent application of potassium organotrifluorob-
orates in organic transformations, further advances of this field
especially with microwave irradiation in water has recently been
made.3 We focused on the development of a new catalyst system
for allylation reactions that involve potassium allyltrifluoroborates,
organic halides as electrophiles, water as a solvent, and microwave
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sum).
activation. Except for a few recent reports attempts to use allylbo-
ron reagents (especially potassium allyltrifluoroborates) as cou-
pling partners with dihalo compounds have been largely
unknown.4 Another significant advantage of using potassium allyl-
trifluoroborate is that it is stable and can be readily prepared com-
pared to the corresponding allylboronic esters. Allylboronic esters
are not common in Suzuki coupling reactions because of their sen-
sitivity and reactivity. In preliminary observation, when potassium
allyltrifluoroborate was treated with 4-bromoiodobenzene in the
presence of a palladium catalyst in isopropanol/water (IPA/water)
under microwave irradiation, an interesting coupling product
was obtained (Scheme 1).
To obtain an efficient catalyst for homoallylation reactions
using potassium allyltrifluoroborates and aryl halides, we intro-
duced various palladium salts such as Pd(OAc)2, PdCl2(dppf)CH2Cl2,
Pd2(dba)3CHCl3, PdCl2(dphos)2, Pd(dba)2, PdCl2(dtbpf), and Pd(Ph3P)4

and ligands such as dppb, dppf, Ph3P, and dppe. Bases such as KF,
Cs2CO3, K2CO3, KOH, and iPr2NEt; solvents such as water, IPA/
water, and THF/water were investigated using both microwave
heating and conventional heating. Reactions investigated are
summarized in Scheme 2. In method A, a 1 to 2 ratio of potassium
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Method Observed by GC-MS

Method A 1 to 2 (.25 mmol: .5 mmol)
PdCl2(dppf)CH2Cl2 5 mole %
K2CO3 1.0 mmol
IPA/H2O 2.5 mL
120 ºC, 2 days

BrBr

Method B 1 to 2 (.5 mmol: .5 mmol)
PdCl2(dppf)CH2Cl2 5 mole %
K2CO3 1.0 mmol
IPA/H2O 2.5 mL
MW, 120 ºC, 20 min Br Br

Method C 1 to 2 (.625 mmol: .25 mmol)
PdCl2(dtbpf) 3 mole %
K2CO3 1.0 mmol
IPA/H2O 2.5 mL
MW, 120 ºC, 20 min

Method C in conventional heating
for overnight

Br

BrBr
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Scheme 2.

Table 1
PdCl2(dtbpf)-catalyzed cross-coupling reaction of allyltrifluoroborate 1 and aryl halides2a

Entry BF3K

1
X

2
Z Product 3 Reaction time (h) Yield (%)

1 1 H I
2a 3a

35 77

2 1 I I

2b
I

3b
50 95

3 1 Cl I

2c
Cl

3c
40 79

4 1 Br I

2d
Br

3d
30 95

5 1 F I

2e
F

3e
30 85

6 1 F3C I
2f

F3C
3f

50 77
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Table 1 (continued)

Entry
BF3K

1
X

2
Z Product 3 Reaction time (h) Yield (%)

7 1 NC I
2g

NC
3g

30 81

8 1

I

Cl

2h Cl
3h 45 84

9 1 Br

I

2i Br 3i
40 71

10 1 H3C I

2j
H3C

3j
20 95

11 1 Cl Br

2k
Cl

3k
20 94b

12 1

Br

Cl
2l Cl 3l

30 71b

a All reactions were run at least two times. In all cases minor products were the corresponding a-methyl styrenes 4 or exo-products.
b Mixture of c- and b-products. The products were purified by silica gel chromatography.
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allyltrifluoroborate 1 and 4-bromoiodobenzene 2d along with
5 mol % of PdCl2(dppf)CH2Cl2 and 4 equiv of K2CO3 were added in
1 M solution of isopropanol–water and refluxed for overnight.
The reaction progress was monitored by GC–MS. No allylation
was observed but the homo-coupling product 4,40-dibromo biphe-
nyl, along with starting dihalo compounds, was observed. In meth-
od B, changing the proportion of potassium allyltrifluoroborate 1
and 4-bromoiodobenzene 2d to 1:1 along with same loading of
catalyst and base in isopropanol–water and the reaction mixture
irradiated under microwave heating system generated the allylat-
ed product along with the double addition product shown previ-
ously, in Scheme 1. The reproducibility of this reaction was not
reliable. Switching to a new palladium salt PdCl2(dtbpf) in method
C led to new catalyst system that performed in a selective monoal-
lylation fashion. The combination of PdCl2(dtbpf) catalyst, 4-bro-
moiodobenzene, K2CO3, and water–isopropanol under microwave
irradiation for 30 min produced allyl coupling products with
remarkable regioselectivity (Scheme 2). The potassium allyltrifluo-
roborate was prepared using the known method5 and was then
treated with various dihalides such as 1,4-diiodobenzene 2b,
4-chloroiodobenzene 2c, 4-bromoiodobenzene 2d, and 4-fluoro-
iodobenzene 2e (Table 1, entries 2–5) applying method C. In all
cases, allylation reactions took place at the central carbon, b-carbon
selectivity. When iodobenzene 2a was employed the same selec-
tivity was observed (Table 1, entry 1). When the catalyst was used
in excess the starting material disappeared rapidly but the homo-
coupled product predominated.

To observe the effect of substituents on the aromatic rings,
functional groups attached to the aryl rings, such as CF3, CN, and
CH3, were introduced by following the reaction conditions de-
scribed in method C. Reactions furnished successful cross-coupling
allylation products 3f, 3g, and 3j with b-carbon selectivity (Table 1,
entries 6, 7, and 10). 3-Chloroiodobenzene 2h and 3-bromoiodo-
benzene 2i, also gave the corresponding trans-b-methylstyrenes
3h and 3i, respectively (Table 1, entries 8 and 9).6 4-Chlrobromo-
benzene, 2k and 3-chlorobromobenzene, 2l also underwent the
coupling reaction but selectivity was poor. c- or terminal carbon
addition products predominated along with b- or central carbon
addition products (Table 1, entries 11 and 12). The ratio was c:b
(3:2). It was noted that GC–MS analysis showed complete conver-
sion to the product but when the reaction mixture was subjected
to silica gel chromatography, some of the products were lost. Prod-
uct volatility could be the cause of the loss. The highlighted part of
this new transformation is regioselectivity. The generally accepted
mechanism for this type of reaction involves nucleophilic attack on
a cationic p-allylpalladium complex at the terminal or c-carbon, in
some cases at the a-carbon.4 Louis Hegedus’s pioneering report on
the carbanion attacking the central carbon of the p-allyl complex
greatly supports the present observation.7 A reasonable mecha-
nism for cyclopropanation involves direct nucleophilic attack on



BF3K ZI
Method C

Z
Z

++

5
Z = Cl, Br, CH3

Z = Cl, 6a + 7a; Yield 54 %
Z = Br, 6b + 7b; Yield 41 %
Z = CH3, 6c + 7c; Yield 77 %

α-product 6 γ-product 7

Scheme 4.

5204 M. Al-Masum, S. Alam / Tetrahedron Letters 50 (2009) 5201–5204
the central carbon of the p-allyl system to form palladacyclobu-
tane, followed by reductive elimination to produce the cyclopro-
pane which presumably isomerizes to trans-b-methylstyrene
(Scheme 3).8,9

Interestingly, when same reaction condition (method C) was
applied to potassium crotyltrifluoroborates and aryl halides, cou-
pling products with a-selectivity were predominated along with
trace amount of c-adduct (Scheme 4).

In conclusion, our efforts demonstrate a facile and simplified
coupling reaction of potassium allyltrifluoroborates and aryl
halides with remarkable regioselectivity. Further use of these
developments in synthetic organic chemistry is in progress.
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